Search results

1 – 10 of over 1000
Article
Publication date: 1 September 2006

Charles Terranova

Sun Microsystems developed a merger and acquisition data‐capturing exercise, which was put into practice when the company acquired StorageTek. Charles “Terry” Terranova, a senior…

Abstract

Sun Microsystems developed a merger and acquisition data‐capturing exercise, which was put into practice when the company acquired StorageTek. Charles “Terry” Terranova, a senior organizational consultant at Sun, explains how he gathered crucial information on each company’s culture to assist managers with the successful merger of the two companies.

Details

Strategic HR Review, vol. 5 no. 6
Type: Research Article
ISSN: 1475-4398

Keywords

Article
Publication date: 21 December 2021

Hongyu Ma, Yongmei Carol Zhang, Allan Butler, Pengyu Guo and David Bozward

China has a new rural revitalization strategy to stimulate rural transformation through modernizing rural areas and resolving their social contradictions. While social capital is…

Abstract

Purpose

China has a new rural revitalization strategy to stimulate rural transformation through modernizing rural areas and resolving their social contradictions. While social capital is recognized as an important element to rural revitalization and entrepreneurship, research into the role of psychological capital is less developed. Therefore, this paper assesses the impact of both social and psychological capital on entrepreneurial performance of Chinese new-generation rural migrant entrepreneurs (NGRMEs) who have returned to their homes to develop businesses as part of the rural revitalization revolution.

Design/methodology/approach

Based on a survey, data were collected from 525 NGRMEs in Shaanxi province. This paper uses factor analysis to determine variables for a multiple linear regression model to investigate the impacts of dimensions of both social capital and psychological capital on NGRMEs’ entrepreneurial performance.

Findings

Through the factor analysis, social capital of these entrepreneurs consists of five dimensions (reputation, participation, networks, trust and support), psychological capital has three dimensions (innovation and risk-taking, self-efficacy and entrepreneurial happiness) and entrepreneurial performance contains four dimensions (financial, customer, learning and growth, and internal business process). Furthermore, the multiple linear regression model empirically verifies that both social capital and psychological capital significantly influence and positively correlate with NGRMEs' entrepreneurial performance.

Originality/value

This study shows the importance of how a mixture of interrelated social and psychological dimensions influence entrepreneurial performance that may contribute to the success of the Chinese rural revitalization strategy. This has serious implications when attempting to improve the lives of over 100 million rural Chinese citizens.

Details

International Journal of Entrepreneurial Behavior & Research, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2554

Keywords

Article
Publication date: 28 October 2014

Ke Sun, Lin Lu and Yu Jiang

– The purpose of this paper is to study the effect of particle shapes (spherical particle and nonspherical fiber) on their orientation distributions in indoor environment.

Abstract

Purpose

The purpose of this paper is to study the effect of particle shapes (spherical particle and nonspherical fiber) on their orientation distributions in indoor environment.

Design/methodology/approach

This paper adopted a particle model to predict the fibrous particle flow and distribution, and analyzed the orientation distributions of nonspherical fiber particles and spherical particles in airflows like indoor places. Fokker-Planck model was employed to solve the orientation behavior of nonspherical fiber particles.

Findings

The simulation results discover that the nonspherical airborne fiber particles have very different characteristics and behaviors and their orientation distributions are totally different from the uniform distribution of spherical particles. The investigation of the particle orientation tensor and orientation strength indicates that the airflow field becomes more anisotropic due to the suspended fibers. The airborne fiber particles increase the viscosity of the room airflow due to the fiber induced additional viscosity.

Originality/value

Orientation tensor, strength and additional viscosity in fibrous flow are seldom investigated indoor. This research reveals that the particle shape has to be considered in the analysis of particle transport and distribution in indoor places as most suspended indoor particles are nonspherical.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 June 2020

Kesheng Lin, Jie Liu, Jia-Min Wu, Yunlong Sun, Feng Li, Yan Zhou and Yusheng Shi

The main cause of aseptic inflammation after an in vivo implantation is that Poly(L-lactide) (PLLA) and Poly(D-lactide) have a slower degradation and absorption rate, while…

Abstract

Purpose

The main cause of aseptic inflammation after an in vivo implantation is that Poly(L-lactide) (PLLA) and Poly(D-lactide) have a slower degradation and absorption rate, while Poly(D, L-lactide) (PDLLA) has a much faster degradation rate than PLLA because of its amorphous structure. Also, the hydrolyzate of Hydroxyapatite (HA) is alkaline, which can neutralize local tissue peracid caused by hydrolysis of Polylactic acid.

Design/methodology/approach

In this study, the selective laser sintering (SLS) technique was chosen to prepare bone scaffolds using nano-HA/PDLLA composite microspheres, which were prepared by the solid-in-oil-in-water (S/O/W) method. First, the SLS parameters range of bulk was determined by the result of a single-layer experiment and the optimized parameters were then obtained by the orthogonal experiment. The tensile property, hydrophobicity, biocompatibility, biological toxicity and in vitro degradation of the samples with optimized SLS parameters were characterized.

Findings

As a result, the samples showed a lower tensile strength because of the many holes in their interior, which was conducive to better cell adhesion and nutrient transport. In addition, the samples retained their inherent properties after SLS and the hydrophobicity was improved after adding nano-HA because of the OH group. Furthermore, the samples showed good biocompatibility with the large number of cells adhering to the material through pseudopods and there was no significant difference between the pure PDLLA and 10% HA/PDLLA in terms of biological toxicity. Finally, the degradation rate of the composites could be tailored by the amount of nano-HA.

Originality/value

This study combined the S/O/W and SLS technique and provides a theoretical future basis for the preparation of drug-loaded microsphere scaffolds through SLS using HA/PDLLA composites.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 August 2023

Hongyan Zhu, Pengzhen Lv, Xiaochong Wu, Yuansheng Wang, Wei Liu, Huagang Lin and Zhufeng Yue

This paper aims to propose a two-stage vibration isolation system for large airborne equipment to isolate aircraft vibration load.

Abstract

Purpose

This paper aims to propose a two-stage vibration isolation system for large airborne equipment to isolate aircraft vibration load.

Design/methodology/approach

First, the vibration isolation law of the discrete model of large airborne equipment under different damping ratios, stiffness ratios and mass ratios is analyzed, which guides the establishment of a three-dimensional solid model of large airborne equipment. Subsequently, the vibration isolation transfer efficiency is analyzed based on the three-dimensional model of the airborne equipment, and the angular and linear vibration responses of the two-stage vibration isolation system under different frequencies are studied.

Findings

Finally, studies have shown that the steady-state angular vibration at the non-resonant frequency changes little. In contrast, the maximum angular vibration at the resonance peak reaches 0.0033 rad, at least 20 times the response at the non-resonant frequency. The linear vibration at the resonant frequency is at least 2.14 times the response at the non-resonant frequency. Obviously, the amplification factor of linear vibration is less than that of angular vibration, and angular vibration has the most significant effect on the internal vibration of airborne equipment.

Originality/value

The two-stage vibration isolation equipment designed in this paper has a positive guiding significance for the vibration isolation design of large airborne equipment.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 February 2017

Qiang Fang, Weidong Chen, Anan Zhao, Changxi Deng and Shaohua Fei

In aircraft wing–fuselage assembly, the distributed multi-point support layout of positioners causes fuselage to deform under gravity load, leading to assembly difficulty and…

Abstract

Purpose

In aircraft wing–fuselage assembly, the distributed multi-point support layout of positioners causes fuselage to deform under gravity load, leading to assembly difficulty and assembly stress. This paper aims to propose a hybrid force position control method to balance aerodynamic shape accuracy and deformation of assembly area, thereby correcting assembly deformation and reducing assembly stress.

Design/methodology/approach

Force and position control axes of positioners are selected based on screw theory and ellipsoid method. The position-control axes follow the posture trajectory to align the fuselage posture. To exert force on the fuselage and correct the deformations, the force-control axes follow the contact force derived by using orthogonal experiments and partial least squares regression (PLSR). Finite element simulation and one-dimension deformation correction experiment are conducted to verify the validity of this method.

Findings

Simulation results indicate that hybrid force position control method can correct assembly deformation and improve the wing–fuselage assembly quality significantly. Experiment on specimen verifies the effect of this method indirectly.

Originality/value

The proposed method gives a solution to solve the deformation problem during aircraft wing-fuselage assembly, thereby reducing assembly stress and improving assembly quality.

Details

Assembly Automation, vol. 37 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 September 2017

Qing Wang, Yadong Dou, Liang Cheng and Yinglin Ke

This paper aims to provide a shimming method based on scanned data and finite element analysis (FEA) for a wing box assembly involving non-uniform gaps. The effort of the present…

410

Abstract

Purpose

This paper aims to provide a shimming method based on scanned data and finite element analysis (FEA) for a wing box assembly involving non-uniform gaps. The effort of the present work is to deal with gap compensation problem using hybrid shims composed of solid and liquid forms.

Design/methodology/approach

First, the assembly gaps of the mating components are calculated based on the scanned surfaces. The local gap region is extracted by the seed point and region growth algorithm from the scattered point cloud. Second, with the constraints of hole margin, gap space and shim specification, the optional shimming schemes are designed by the exhaustive searching method. Finally, the three-dimensional model of the real component is reconstructed based on the reverse engineering techniques, such as section lines and sweeping. Using FEA software ABAQUS, the stress distribution and damage status of the joints under tensile load are obtained for optimal scheme selection.

Findings

With the scanned mating surfaces, the non-uniform gaps are digitally evaluated with accurate measurement and good visualization. By filling the hybrid shims in the assembly gaps, the joint structures possess similar load capacity but stronger initial stiffness compared to the custom-shimmed structures.

Practical implications

This method has been tested with the interface data of a wing tip, and the results have shown good efficiency and automation of the shimming process.

Originality/value

The proposed method can decrease the manufacturing cost of shims, shorten the shimming process cycle and improve the assembly efficiency.

Details

Assembly Automation, vol. 37 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 12 January 2024

Lipeng Pan, Yongqing Li, Xiao Fu and Chyi Lin Lee

This paper aims to explore the pathways of carbon transfer in 200 US corporations along with the motivations that drive such transfers. The particular focus is on each firm’s…

Abstract

Purpose

This paper aims to explore the pathways of carbon transfer in 200 US corporations along with the motivations that drive such transfers. The particular focus is on each firm’s embeddedness in the global value chain (GVC) and the influence of environmental law, operational costs and corporate social responsibility (CSR). The insights gleaned bridge a gap in the literature surrounding GVCs and corporate carbon transfer.

Design/methodology/approach

The methodology comprised a two-step research approach. First, the authors used a two-sided fixed regression to analyse the relationship between each firm’s embeddedness in the GVC and its carbon transfers. The sample consisted of 217 US firms. Next, the authors examined the influence of environmental law, operational costs and CSR on carbon transfers using a quantitative comparison analysis. These results were interpreted through the theoretical frameworks of the GVC and legitimacy theory.

Findings

The empirical results indicate positive relationships between carbon transfers and GVC embeddedness in terms of both a firm’s position and its degree. From the quantitative comparison, the authors find that the pressure of environmental law and operational costs motivate these transfers through the value chain. Furthermore, CSR does not help to mitigate transfers.

Practical implications

The findings offer insights for policymakers, industry and academia to understand that, with globalised production and greater value creation, transferring carbon to different parts of the GVC – largely to developing countries – will only become more common. The underdeveloped nature of environmental technology in these countries means that global emissions will likely rise instead of fall, further exacerbating global warming. Transferring carbon is not conducive to a sustainable global economy. Hence, firms should be closely regulated and given economic incentives to reduce emissions, not simply shunt them off to the developing world.

Social implications

Carbon transfer is a major obstacle to effectively reducing carbon emissions. The responsibilities of carbon transfer via GVCs are difficult to define despite firms being a major consideration in such transfers. Understanding how and why corporations engage in carbon transfers can facilitate global cooperation among communities. This knowledge could pave the way to establishing a global carbon transfer monitoring network aimed at preventing corporate carbon transfer and, instead, encouraging emissions reduction.

Originality/value

This study extends the literature by investigating carbon transfers and the GVC at the firm level. The authors used two-step research approach including panel data and quantitative comparison analysis to address this important question. The authors are the primary study to explore the motivation and pathways by which firms transfer carbon through the GVC.

Details

Sustainability Accounting, Management and Policy Journal, vol. 15 no. 2
Type: Research Article
ISSN: 2040-8021

Keywords

Abstract

Purpose

Additive manufacturing (AM) or solid freeform fabrication (SFF) technique is extensively used to produce intrinsic 3D structures with high accuracy. Its significant contributions in the field of tissue engineering (TE) have significantly increased in the recent years. TE is used to regenerate or repair impaired tissues which are caused by trauma, disease and injury in human body. There are a number of novel materials such as polymers, ceramics and composites, which possess immense potential for production of scaffolds. However, the major challenge is in developing those bioactive and patient-specific scaffolds, which have a required controlled design like pore architecture with good interconnectivity, optimized porosity and microstructure. Such design not only supports cell proliferation but also promotes good adhesion and differentiation. However, the traditional techniques fail to fulfill all the required specific properties in tissue scaffold. The purpose of this study is to report the review on AM techniques for the fabrication of TE scaffolds.

Design/methodology/approach

The present review paper provides a detailed analysis of the widely used AM techniques to construct tissue scaffolds using stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), binder jetting (BJ) and advanced or hybrid additive manufacturing methods.

Findings

Subsequently, this study also focuses on understanding the concepts of TE scaffolds and their characteristics, working principle of scaffolds fabrication process. Besides this, mechanical properties, characteristics of microstructure, in vitro and in vivo analysis of the fabricated scaffolds have also been discussed in detail.

Originality/value

The review paper highlights the way forward in the area of additive manufacturing applications in TE field by following a systematic review methodology.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 January 2020

Meng Xiao, Qinhai Ma and Man Li

Co-creating value with customers is important for companies in order to gain a competitive advantage. Based on resource theory and social interaction theory, the purpose of this…

Abstract

Purpose

Co-creating value with customers is important for companies in order to gain a competitive advantage. Based on resource theory and social interaction theory, the purpose of this paper is to explore the customer participation mechanism in co-creating value and test the effects of different types of customer resources and multi-level customer–firm interaction on customer value.

Design/methodology/approach

Data were collected from tourism industry. Hypotheses were tested using structural equation modeling.

Findings

The results indicate that both the customer’s human resource and relationship resource have a significantly positive effect on customers’ utilitarian value and hedonic value through reactive and proactive interactions. Reactive interaction has a full mediating effect on the relationship between relationship resource and proactive interaction, whereas proactive interaction has a full mediating effect on the relationship between reactive interaction and hedonic value.

Originality/value

This study explores the mediating effects of customer–firm interaction between customer resources and customer value. This paper contributes to the understanding of customers’ motivations for, and the processes of, participating in value co-creation.

Details

Journal of Contemporary Marketing Science, vol. 3 no. 1
Type: Research Article
ISSN: 2516-7480

Keywords

1 – 10 of over 1000